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Abstract

A new formulation of potential scattering in quantum mechanics is developed
using a close structural analogy between partial waves and the classical
dynamics of many non-interacting fields. Using a canonical formalism we
find nonlinear first-order differential equations for the low-energy scattering
parameters such as scattering length and effective range. They significantly
simplify typical calculations, as we illustrate for atom–atom and neutron–
nucleus scattering systems. A generalization to charged particle scattering is
also possible.

PACS numbers: 03.65.Nk, 34.50.−s, 67.85.−d, 25.40.Dn

1. Introduction

Low-energy scattering parameters such as the scattering length and the effective range are
very important physical quantities that are used to describe a variety of systems. Among these
are nuclear reactions of relevance to nucleosynthesis [1] and cold dilute atomic gases [2].
To find the low-energy scattering behaviour for a given potential, the generic approach is to
solve the stationary Schrödinger equation for a range of scattering momenta and to extract the
scattering phase shifts [3]. In contrast, the formalism we will present allows the computation
of the scattering length and effective range directly from the potential.

To reformulate quantum scattering theory, we use methods from classical mechanics.
A ‘Hamiltonian’ function expressed in terms of the coefficients of the Riccati–Bessel and
Riccati–Neumann function expansion of the solution of the Schrödinger equation was found
amenable to formal canonical manipulations. This Hamiltonian, of a quadratic form, can be
rendered constant with an appropriate canonical transformation. From this transformation we
obtain a first-order, nonlinear differential equation for the scattering problem that generalizes
Calogero’s equation [4]. We demonstrate how this equation can be used to solve the
scattering problem for low momenta and several partial waves for cases involving long-range
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Van der Waals-type interaction only and those involving short-range nuclear interaction only.
A modified effective range theory can also be formulated for Coulomb plus short-range
potentials as shown in [5], and its Calogero version is described briefly in appendix B. In the
same appendix, we also briefly discuss the inherent difficulties encountered in deriving such
an expansion for the Coulomb plus long-range polarization interactions, as clearly shown in
[6–8].

The examples that we consider in detail in this paper range from neutron–nucleus
scattering to atom–atom scattering. In the latter, the basic input into the atom–atom effective
interaction is the scattering length a, defined as the scattering amplitude evaluated at zero
energy a = −f (E = 0), where f is determined from the l = 0 phase shift, δ0(k).

The effective range expansion for Dl(k) = tan(δl (k))

k2l+1 is [5],

1

Dl(k)
= − 1

al

+
1

2
rlk

2 − Plr
3
l k4. (1)

Our formalism allows the calculation of al, rl and Pl directly from the potential, using first-
order, nonlinear, differential equations, and may allow the development of new approximation
schemes for the calculation of these low-energy parameters in cases where the usual procedure
of solving the second-order equation (the Schrödinger equation) may be cumbersome.

This paper is organized as follows. In section 2 we present our canonical formulation
of potential scattering. In section 3 we derive the Calogero-type equation for the scattering
length function and obtain first-order nonlinear differential equations for the scattering length,
effective range and shape parameter. In section 4, we apply the theory to the calculation of the
low-energy parameters of typical atomic scattering systems. One further application to typical
short-range potential nuclear scattering is presented in section 5. Finally, in section 6 several
concluding remarks are made. Appendices contain the essentials of potential scattering and
generalizations of our work to charged particle scattering.

2. Canonical formulation

In quantum scattering from a central potential V (r) = h̄2

2m
U(r), one has to solve the radial

Schrödinger equation [9, 10][
− d2

dr2
+ U(r) +

l(l + 1)

r2

]
φl(k, r) = k2φl(k, r), (2)

where l is the angular momentum quantum number, and k is the scattering momentum. It is
known that the solution can be parametrized as

φl(k, r) = ul(kr)ql(k, r) + vl(kr)pl(k, r), (3)

where ul(kr) and vl(kr) are the Riccati–Bessel and Riccati–Neumann functions.
Following [11, 12], we construct a classical ‘Hamiltonian’ function,

H(q, p) = U(r)

2k
(ulql + vlpl)

2. (4)

Through a straightforward computation of dql

dr
and dpl

dr
from equation (2) and equations (A.5)

and (A.8)–(A.10) in the appendix, we find

dql

dr
= ∂H

∂pl

, (5)

dpl

dr
= −∂H

∂ql

. (6)
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It is therefore evident that we may regard ql and pl as the coordinate and conjugate
momentum respectively, with r acting as the ‘time’ variable in a ‘classical’ dynamics governed
by the Hamiltonian H(q, p) above [13]. It should be realized that in this fashion we treat
each partial wave independently as there is no coupling between waves for different l due to
the spherical symmetry of V (r). Thus the scattering problem is reduced to a many (strictly
speaking infinite) non-interacting classical fields problem.

Any function Fl(q, p; r) of q, p and r will evolve in ‘time’ r as

dFl

dr
= [Fl,H ] +

∂Fl

∂r
, (7)

where [Fl,H ] is the Poisson bracket.
In order to identify useful functions for the scattering problem, such as the phase shift, we

perform a canonical transformation to a new coordinate Ql and a new momentum Pl , using
the following generating function:

F2(ql, Pl, r) = 1
2Al(r)q

2
l + Bl(r)qlPl, (8)

where the functions Al(r) and Bl(r) are arbitrary to be determined by imposing a condition
on the new dynamics, and

Ql = ∂F2

∂Pl

= qlBl(r), (9)

and

pl = ∂F2

∂ql

= Al(r)ql + Bl(r)Pl. (10)

The new Hamiltonian function K(Ql, Pl; r) is

K(Ql, Pl; r) = H(ql, pl; r) +
∂F2(ql, Pl; r)

∂r
. (11)

It is now a simple matter to obtain the explicit form of the new Hamiltonian, K, namely

K(Ql, Pl; r) = Q2
l

2B2
l

[
U(r)

k
(ul + vlAl)

2 +
dAl

dr

]
+

QlPl

Bl

[
U(r)

k
vl(ul + vlAl)Bl +

dBl

dr

]

+
U(r)

2k
v2

l B
2
l P

2
l . (12)

The goal is now to render the new coordinate Ql cyclic. To this end, we impose the condition
that the functions Al(r) and Bl(r) satisfy the first-order, non-linear differential equations

dAl(r)

dr
+

U(r)

k
(ul(r) + vl(r)Al(r))

2 = 0, (13)

and
dBl(r)

dr
+

U(r)

k
(ul(r) + vl(r)Al(r))Bl(r) = 0. (14)

To solve these, we need to specify a boundary condition. We choose the values of the functions
Al(0) = 0 and Bl(0) = 1, which guarantee that the new coordinate Ql and momentum Pl

have the same limiting values at r = 0 as the original ones, ql and pl , namely Ql(r) → 1 and
Pl(r) → 0 as r → 0.

With this choice of the coefficients Al(r) and Bl(r), the new Hamiltonian function
K(Ql, Pl; r) is

K(Ql, Pl; r) = U(r)

2k
v2

l (r)B
2
l (r)P

2
l , (15)
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and the new equations of motion are
dPl

dr
= − ∂K

∂Ql

= 0 (16)

and
dQl

dr
= ∂K

∂Pl

= U(r)

2k
v2

l (r)B
2
l Pl. (17)

We choose the solutions, Pl(r) = 0 and Ql(r) = 1, which are consistent with the new
equations of motion and the boundary conditions. With this choice, we have the solution of
the original problem:

ql(r) = 1

Bl(r)
(18)

and

pl(r) = Al(r)

Bl(r)
. (19)

By elimination of Bl(r) from the above equations, we obtain for the function Al(r) the
following

Al(r) = pl(r)

ql(r)
, (20)

which can be identified as the phase shift function tan δl(r), introduced by Calogero [4].
For charged particle scattering, the free solutions ul(kr), vl(kr) are replaced by the scaled

Coulomb wavefunctions, defined in appendix B. The equation for the tangent function Al(r)

is given by a similar equation as 13, with the replacement of ul(kr) by the regular scaled
Coulomb wavefunction, Fl(kr) and vl(kr) by the irregular scaled Coulomb wavefunction,
Gl (kr). A detailed discussion of the charged-particle Calogero equation of the scattering
length function is beyond the scope of this paper, but a brief preview is given in appendix B.

3. Scattering length function

It is convenient to introduce the scattering length function a(k, r) defined as the function

al(k, r) = − Al(r)

k(2l+1)
, (21)

which satisfies the Calogero-type equation,
dal(k, r)

dr
− U(r)

k2l+2
(ul(kr) − k(2l+1)vl(kr)al(k, r))2 = 0. (22)

Note that al(k;∞) has the dimension of L2l+1.
The above equation has to be solved with the boundary condition al(k, 0) = 0. The

scattering length itself is, by definition, al(0,∞). For l = 0 the equation becomes
da(k, r)

dr
− U(r)

k2
(sin(kr) − k cos(kr)a(k, r))2 = 0. (23)

Further, specifying k = 0 we have
da(0, r)

dr
− U(r)[r − a(0, r)]2 = 0. (24)

A final special case of interest is k = 0 and integer l. Then the asymptotic behaviour of the
Bessel functions (see equations (A.19)–(A.20)) gives

dal(0, r)

dr
− U(r)

[
rl+1

(2l + 1)!!
− (2l − 1)!!

rl
al(0, r)

]2

= 0. (25)
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Equations (22) and (25) are already sufficient to extract the low-energy scattering behaviour
that defines equation (1) as we shall demonstrate in the following section. However, they
can also be used to obtain equations that determine the parameters of the effective range
expansion directly. This can be done by expanding equation (22) in k, equating coefficients
and using the identification Dl(k) → −al(k, r). The resulting Calogero equations for r0(r)

and p0(r) = P0(k, r)r0(k, r)3 are

dr0(r)

dr
+ 2rU(r)r0(r)

(
r

a0(r)
− 1

)
+ 2r2U(r)

[
r

a0(r)
− 1

] [
r

3a0(r)
− 1

]
= 0, (26)

dp0(r)

dr
+ 2rU(r)

[
r

a(r)
− 1

]
p0(r) + F(r) = 0, (27)

where the function F(r) is given by

F(r) = r2U(r)

12
(2r − r0(r))(2r − 3r0(r)) +

r2U(r)

45a2
0(r)

[2r4 + 3a0(r)r
2(5r0(r) − 4r)]. (28)

The above two differential equations can be integrated once the l = 0 scattering length
function, a0(r) is known. Numerically, equations (24)–(27) could be solved as a coupled
system. Note that r0(r = 0) = 0 and p0(r = 0) = 0 owing to the boundary condition obeyed
by the scattering length function al(k, r = 0) = 0.

The scattering length equation for any partial wave can be written down, with the aid of
equation (22) and equations (A.19)–(A.20) of the appendix:

dal(0, r)

dr
− U(r)

[
rl+1

(2l + 1)!!
− (2l − 1)!!

rl
al(0, r)

]2

= 0. (29)

The corresponding l �= 0 version of the Calogero equations for the effective range function
rl(r) and shape parameter function pl(r) can be easily worked out using the small k form of
the Riccati–Bessel and Riccati–Neumann functions, given in appendix A.

Before we turn to the application of our formalism to physical systems, we specify the
types of the potential V (r) which allow using the effective range expansion and, consequently,
the above Calogero-type equations for low-energy scattering parameters. For low-energy
scattering of composite systems such as atoms or nuclei, the most general form of the
interaction potential can written as

V (r) = V l(r) + V s(r). (30)

Here V l(r) is the long-range component, containing the 1/r Coulomb potential, VC(r), for
charged systems, and long-range polarization components, VP (r), for example describing
Van der Waals forces. Both the Coulomb and the adiabatic dipole polarization potentials
arise from the one and multi-photon exchange. On the other hand V s(r) is the short-range
interaction arising from the meson exchange, usually operative in nuclear scattering. The
theory of effective range expansion is well founded for potentials of the types V (r) = VP (r)

(atom–atom scattering), V (r) = V s(r) (neutron–nucleus scattering). A Coulomb-modified
effective range expansion is also well founded [5] for potentials of the type V (r) = VC +V s(r)

(proton–nucleus and nucleus–nucleus scattering). In the scattering of a charged particle from
a dipole–polarizable charged target particle (atomic ion–diatomic molecular ion, very low-
energy proton–deuteron), the potential is of the long-range type only, V (r) = VC(r) + VP (r).
In this latter case, the Coulomb-modified effective range expansion fails [6–8]. However,
one can still define an s-wave scattering length, albeit modified, as shown by [6, 7]. In
the applications below, we restrict ourselves to the cases involving atom–atom scattering,
V (r) = VP (r), and to neutron–nucleus scattering, V (r) = V s(r). The Coulomb-modified
theory is briefly described in appendix B.

5
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4. Cold atom scattering

To show how our formalism simplifies typical calculations, we now use it to determine low-
energy scattering parameters for some exemplary potentials and compare our results with the
literature. We shall mostly consider scattering of Cs atoms interacting with the potential [14]

V (r) = 1

2
βrλ e−ηr −

(
C6

r6
+

C8

r8
+

C10

r10

)
fc(r), (31)

fc(r) = θ(r − rc) + θ(rc − r) e−(rc/r−1)2
, (32)

where in atomic units β = 1.6 × 10−3, λ = 5.53, η = 1.072, C6 = 7020, C8 =
1.1 × 106, C10 = 1.7 × 108, rc = 23.1654, and the reduced mass of a cesium pair is
m = 1.211 × 105.

4.1. S-wave scattering length

The s-wave scattering length can be determined according to the Calogero equation (24). It has
been recently used to assess corrections to calculations that rely on using the usual Schrödinger
equation with long-range interactions [15]. Here, we first summarize their calculations and
then extend them to other partial waves and to determining the effective range and shape
parameters.

Integrating this equation is numerically non-trivial, owing to poles in a(0, r) that arise
from bound states in the potential. This problem can be overcome by using a symplectic
integrator or a variable transformation that maps the spatial domain and the range of function
values onto a compact interval [15]. For the latter one defines tan[θ(r)] = a(0, r) and
r = tan(φ), and then solves a nonlinear equation for θ(φ). Since equation (24) is singular at
r = 0, the initial condition is a(ε) = 0, with ε chosen sufficiently small. The determination of
the Cs–Cs scattering length in this manner has been done in [15], which also shows a(0, r) as a
function of r to visualize the above-mentioned pole structure. The scattering length following
from this potential, as = 68.21 is reproduced precisely by equation (24).

4.2. S-wave effective range expansion

Our formalism allows us to use the transformation of the preceding section to determine
quantities beyond the scattering length. For the effective range, we present two methods: the
direct integration of equation (26) and the integration of equation (23) for a range of k and
subsequent fitting of equation (1).

4.2.1. Effective range equation. We use the substitutions tan[θ1(r)] = a(0, r), tan[θ2(r)] =
r0(r) and r = tan(φ) in equations (24)–(26). The resulting system of two coupled equations
is

dθ1(φ)

dφ
− sec4 [φ] sin2 [θ1(φ) − φ]U [tan(φ)] = 0,

dθ2(φ)

dφ
− sec2 [φ] cos2 [θ2(φ)]U [tan(φ)]

[
2 tan[θ2(φ)] tan(φ)

(
1 − tan(φ)

tan[θ1(φ)]

)

− 2 tan(φ)2 +
8

3

tan(φ)3

tan[θ1(φ)]
− 2

3

tan(φ)4

tan[θ1(φ)]2

]
= 0. (33)
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Figure 1. (a) Function θ2(φ) obtained from equation (33), (b)–(d) Reconstructed r0(r) for different
ranges of r. The pole structure in (b) arises from bound states in the potential. The asymptotic
value reached in (d) gives the physical effective range r0 = 623.361.

Again we use the initial conditions a(0, εr ) = εa and r0(εr) = 0, with εa, εr small, to avoid
an initial singularity. The solution is shown in figure 1; similar plots showing the scattering
length can be found in [15].

4.2.2. Low k expansion. Alternatively, in equation (23) we define tan[θ(k, r)] = a(k, r) and
r = tan(φ). This yields

dθ(k, φ)

dφ
− sec2 [φ] cos2 [θ(k, φ)]

V [tan(φ)]

Ek

(sin[k tan(φ)]

− k cos[k tan(φ)] tan[θ(k, φ)])2 = 0. (34)

We now solve equation (34) for several values of k; see figure 2. Using the effective range
expansion as in equation (1) we can then extract the low-energy scattering parameters from
a fit as shown. The values for as and rs agree roughly those of [14] (which are as = 68.22
and rs = 624.55). For the fit we varied the range of values of k under consideration until the
smallest errors were reported by the fitting routine. The directly calculated effective range
agrees better with [14] than that obtained from the fit. However, the fitting procedure is able
to give also an indication of the shape parameter, whereas the direct determination of it, using
equation (27), was plagued by numerical instabilities.

4.3. Higher partial waves

The scattering lengths for higher partial waves (p, d, f,. . .) can, in principle, be obtained from
the simple equation (25). For the potential given at the beginning of this section we find
ap = −4.38×105a3

0 . Higher partial waves for the atom–atom potential cannot be treated with
our method, since the centrifugal terms in equation (25) combine with the long-range tail of
the potential to produce a constant slope of the scattering length function. This shortcoming
is absent in the case of short-range interaction, such as that encountered in neutron–nucleus
scattering, as we discuss in the following section. As additional check of our theory we
reproduced the s-wave and p-wave scattering length for 3He and 4He given in [16], which
relate to the HFDHE2 potential of [17]. This comparison is shown in table 1.

5. Nuclear scattering

For potentials that drop off faster than any polynomial at large r all the partial waves can be
obtained. To demonstrate this, we apply our method to calculate the low-energy scattering

7
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Figure 2. Asymptotic s-wave scattering length function (•) for several values of wave number k.
The solid line is a least-squares fit of the function D0(k) (see equation (1)), from which we can
extract the scattering length as = 68.23 ± 0.01a0, the effective range rs = 541.69 ± 6a0 and the
shape parameter Ps = 0.144 ± 0.006. The uncertainties reflect 95% confidence bounds of the fit.

Table 1. S-wave and p-wave scattering length for the two helium isotopes.

Parameter Present study [16]

3He as −7.03Å −6.97Å
3He ap −26.15Å3 −26.09Å3

4He as 97.21Å 125.08Å
4He ap −42.67Å3 −42.12Å3

parameters for the n + 12C system, where the interaction is short range and contains a spin–
orbit part [18]. In the latter case, owing to the spin s of the neutron, one must specify the
total angular momentum, j = l + s, which can take either one of two values j = l + 1/2 or
j = l − 1/2. The scattering length and the other low-energy parameters acquire two labels
j l. The interaction itself is split into two:

V (r) = V0(r) + Vso(r)l · s. (35)

For j = l + 1/2, one has

Vj=l+1/2(r) = V0(r) +
l

2
Vso(r) (36)

and for j = l − 1/2, one has

Vj=l−1/2(r) = V0(r) − l + 1

2
Vso(r). (37)

In the above equations the spherical potential is denoted by V0(r) and is invariably taken
to have a Fermi-type dependence on r, the so-called the Woods–Saxon shape

V0(r) = − V0

1 + exp
(

r−R
d

) , (38)

while the spin–orbit potential Vso(r) is given by

Vso(r) = 5.5

1 + exp
(

r−R
d

) . (39)

8
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Table 2. Scattering length (in fm2l+1) and effective range (in fm−2l+1) for different angular
momentum channels of a n + 12C collision [18]. Underlines indicate the results from the present
study. The well depth of the channels, V0 (in MeV), is also shown.

l, s V0 al,s al,s , [18] rl,s rl,s , [18] pl,s

s, 1/2 57.6 6.51 6.43 3.58 3.56 −0.055
p, 3/2 45.1 9.16 8.85 −1.68 −1.71 0.038
p, 1/2 45.1 23.21 22.75 −1.15 −1.16 0.26
d, 5/2 56.15 179.6 159.9 −0.32 −0.32 −28.65
d, 3/2 56.15 −56.1 −57.2 −0.061 −0.065 −2864

As in section 4.2, we extract the scattering length and effective range from a fit to the low
momentum behaviour of al,s(k,∞). A comparison of our results with those of [18] is shown
in table 2. As in [18] we choose R = 2.86 fm and d = 0.65 fm, while the strength of the
central potential V0 is adjusted for each n-12C bound-state energy.

6. Conclusion

In this paper, we have explored an analogy between quantum potential scattering and the
classical dynamics of a conservative system of infinite fields. With the aid of an appropriate
canonical transformation of a classical Hamiltonian, we were able to derive the Calogero
equation for the tangent of the phase shift function. This allowed us to obtain a first-order
nonlinear differential equation for the so-called scattering length function, whose asymptotic
value for large separations supplies the well-known low-energy expansion in terms of the
scattering length, effective range and shape parameter for any partial wave. We have applied
our theory to obtain these parameters for typical atom–atom systems (long-range interaction)
and neutron–nucleus systems (short-range interaction). We reached very good agreements
with results obtained through conventional methods like a direct solution of the scattering
Schrödinger equation.

Appendix A. Essentials of quantum potential scattering theory

In this appendix, we supply the essentials of quantum scattering theory as required in section 2.
We consider the scattering of a particle from a spherically symmetric potential. The extension
to the scattering of a spin −1/2 particle can be easily formulated by adding a spin–orbit
interaction term to the potential. The regular solution of the radial Schrödinger equation
describing the scattering by a spherical potential, V (r) = h̄2

2m
U(r) [9, 10],[

− d2

dr2
+ U(r) +

l(l + 1)

r2

]
φl(k, r) = k2φl(k, r) (A.1)

can be written as

φl(k, r) = ul(kr)ql(k, r) + vl(kr)pl(k, r), (A.2)

where ul(kr) and vl(kr) are the Riccati–Bessel and Riccati–Neumann functions, defined
in terms of the usual spherical Bessel jl(kr) and spherical Neumann functions nl(kr),
respectively,

ul(kr) = krjl(kr), (A.3)

vl(kr) = krnl(kr). (A.4)

9
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The functions, ul(kr) and vl(kr) are the regular and irregular solutions of the free radial
Schrödinger equation:[

− d2

dr2
+

l(l + 1)

r2

]
ωl(kr) = k2ωl(kr), (A.5)

where ωl(kr) is ul(r) or vl(r). Clearly the coefficients ql(k, r) and pl(k, r) contain all
information about the scattering.

Since φl(k, r) →r→0 ul(kr), we have the following boundary conditions satisfied by
ql(k, r) and pl(k, r):

ql(k, r) →r→0 1, (A.6)

pl(k, r) →r→0 0. (A.7)

Since the functionns ul(k, r) and vl(k, r) are linearly independent in the sense that the
Wronskian

W [v, u] = vu′ − v′u = k, (A.8)

it follows that ql(k, r) and pl(k, r) may be expressed as

ql(k, r) = 1

k
W [vl, φl], (A.9)

pl(k, r) = −1

k
W [ul, φl]. (A.10)

The usual method of obtaining the scattering observables is to integrate the radial equation
and adjust the asymptotic form to the following:

φl(k, r) → sin

(
kr − l

π

2
+ δl(k)

)
, (A.11)

which allows the extraction of the phase shift function δl(k). All observables can be written
in terms of δl(k). For example, the scattering amplitude f (k, θ) is just

f (k, θ) = 1

2ik

∞∑
l=0

(2l + 1)(1 − exp[2iδl(k)])Pl(cos θ), (A.12)

with the low-energy limit (only l = 0)

f (k, 0) = 1

k
exp(iδ0(k)) sin(δ0(k)) = 1

k cot δ0(k) − ik
, (A.13)

where the function − tan δ0(k)

k
, in the limit of zero energy, is identified with the scattering length.

In the following, we enumerate some useful formulae for the Riccati–Bessel and Riccati–
Neumann functions used in the last section.

The Riccati–Bessel function is given by

ul(ρ) = −(−ρ)l+1

(
1

ρ

d

dρ

)l

j0(ρ), (A.14)

where the spherical Bessel function j0(ρ) = sin ρ

ρ
, and ρ = kr . Similar relation holds for the

Riccati–Neumann function

vl(ρ) = −(−ρ)l+1

(
1

ρ

d

dρ

)l

n0(ρ), (A.15)

where the spherical Neumann function n0(ρ) = cos ρ

ρ
.

10
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The recursion relation follows

ωl(ρ) = (2l + 1)
ωl+1(ρ)

ρ
− ωl−1(ρ), (A.16)

where ωl(ρ) stands for ul(ρ) or vl(ρ). For the l = 1 partial wave, we have

u1(ρ) = sin ρ

ρ
− cos ρ (A.17)

and

v1(ρ) = cos ρ

ρ
+ sin ρ. (A.18)

For higher values of l, these functions are easily obtained from the recursion relation above.
Finally, the behaviour of these functions for small values of the argument is

ul(ρ → 0) = ρl+1

(2l + 1)!!
(A.19)

and

vl(ρ → 0) = (2l − 1)!!

ρl
. (A.20)

Appendix B. Charged particle scattering

When the scattering particles are charged, the 1
r

Coulomb interaction has to be added to the
potential. The free solutions are now Coulomb wavefunctions, and special care must be taken
when performing the low-energy expansion to ensure convergent results for the scattering
length, effective range and shape parameters.

We should emphasize at this point that we leave out all together cases involving long
range polarization potentials together with the Coulomb interaction, such as encountered in
low-energy scattering of protons from the easily dipole polarizable deuteron. Such a situation
also occurs in ionized atom–ionized dimolecule scattering. For more information on the low-
energy nuclear p–D scattering problem, we refer the reader to [6–8] and references therein. In
these articles, a rigorous discussion about the limitation of the effective range expansion in such
cases is given, among other things, in the context of the Calogero equation. In the following
we only treat the Coulomb-modified cases which do not present the problems mentioned in
[6–8].

The appropriate low-energy expansion was developed in [5], and the quantity Dl(E),
becomes in this case

Dc
l (E) = π

2
exp(2πη) tan δl(E), (B.1)

where η is the Sommerfeld parameter defined in terms of the charges of the two particles
Z1 and Z2, by η = Z1Z2e

2

h̄v
, with v being the asymptotic relative velocity. The low-energy

expansion is then given by

2
ωl(E)

(l!)2a2l+1
N

[
2

Dc
l (E)

+ h(η)

]
= − 1

al

+
1

2
rlk

2 − Plr
3
l k4 + O(k6). (B.2)

In the above, the functions ωl(E) and h(η) are, respectively

ωl(E) =
l∏

n=1

(
1 +

n2

η2

)
, (B.3)

11
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h(η) = 1

12η2
+

1

120η4
+ O

(
1

η6

)
, (B.4)

and aN is the so-called nuclear Bohr radius, aN = h̄2

μZ1Z2e2 , with μ being the reduced mass.
The above equation does indeed give convergent results as η goes to ∞ in the zero-E limit.
Further, the equation reduces to that for neutral particles upon setting η = 0.

The corresponding Calogero equation then follows by use of the Wronskian of the scaled
Coulomb wavefunctions

W [Gl (kr),Fl(kr)] = π

2
, (B.5)

where Fl(kr) and Gl (kr) are related to the regular, Fl(kr), and irregular, Gl(kr), Coulomb
wavefunctions [19]:

Fl(kr) = k−1/2 exp(πη)Fl(kr), (B.6)

and

Gl (kr) = π

2
k−1/2 exp(−πη)Gl(kr). (B.7)

The ‘Hamiltonian’ function is

H(ql, pl, r) = U(r)

π
(Flql + Glpl)

2. (B.8)

The Calogero equation for the tangent function can be derived following the same procedure
as that used for the neutral particle scattering:
dac

l (k, r)

dr
− π

2
exp[−2πη]U(r)

[
Fl(kr) − π

2
exp[−2πη]Gl (kr)ac

l (k, r)
]2

= 0, (B.9)

where ac
l (k,∞) is just the Coulomb-modified tangent function, Dc

l (E) =
π
2 exp (2πη) tan δl(E). Clearly, once this function is calculated, the low-energy parameters
can be obtained from the expression 2 ωl(E)

(l!)2a2l+1
N

[
2

Dc
l (E)

+ h(η)
] = − 1

al
+ 1

2 rlk
2 − Plr

3
l k4 + O(k6),

above.
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